Hybrid Holt Winter-Prophet method to forecast the num-ber of foreign tourist arrivals through Bali's Ngurah Rai Airport

Versions

PDF

Keywords

Forecasting
Hybrid Model
MAPE
OSEMN Framework

How to Cite

Damaliana, A. T., Hindrayani , K. M., & Fahrudin, T. M. (2024). Hybrid Holt Winter-Prophet method to forecast the num-ber of foreign tourist arrivals through Bali’s Ngurah Rai Airport. IJDASEA (International Journal of Data Science, Engineering, and Analytics), 3(2). https://doi.org/10.33005/ijdasea.v3i2.8

Abstract

The Indonesian is an archipelago rich in culture and natural resources. The Government of Indonesia utilizes this wealth by maximizing the tourism potential to earn sizeable foreign exchange. As a major destination, the Indonesian government needs a strategy to ensure foreign tourists continue to increase in terms of health, cleanliness, a sustainable environment and infrastructure. When we can forecast the number of foreign tourists, it is hoped that the government can establish appropriate policies to develop tourism. Based on this, an appropriate forecasting method is needed. This study will use a hybrid model with the Holt-Winter and the Prophet method. The data used is the number of foreign tourists to Bali through Ngurah Rai Airport from January 2009 to December 2019. This study will use stages based on the OSEMN Framework. These stages are Obtain, Scrub, Explore, Model, and Interpret. The result of this study is that the MAPE value for the Hybrid Method is 2.5880%. This result means the Hybrid Holt Winter-Prophet is better than the Holt Winter Method

https://doi.org/10.33005/ijdasea.v3i2.8
PDF

References

M. Abdy and dan Nurlaila Kaito, “Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Su-lawesi Selatan Menggunakan Model ARFIMA,” 2022. [Online]. Available: http://www.ojs.unm.ac.id/jmathcos

M. A. N. SARI, I. W. SUMARJAYA, and M. SUSILAWATI, “PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE BALI MENGGUNAKAN METODE SINGULAR SPECTRUM ANALYSIS,” E-Jurnal Matematika, vol. 8, no. 4, p. 303, Nov. 2019, doi: 10.24843/mtk.2019.v08.i04.p269.

E. Sartika, S. Murniati, J. Administrasi Niaga Politeknik Negeri Bandung, J. Gegerkalong Hilir Ds Ciwaruga Bandung, and J. Refrigerasi dan Tata Udara Politeknik Negeri Bandung, “PERAMALAN DISTRIBUSI KEDATANGAN TURIS MANCANEGARA MELALUI PINTU MASUK BANDARA SOEKARNO HATTA MENGGUNAKAN ARIMA DISTRIBUTION FORECASTING ARRIVAL TOURISM MANCANEGARA THROUGH SOEKARNO HATTA AIRPORT ENTRY DOOR USING ARIMA,” 2021.

N. AISHAH, D. DEVIANTO, and M. MAIYASTRI, “PEMODELAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA KE INDONESIA MELAUI BANDARA NGURAH RAI BALI DENGAN MODEL SARIMA-ARCH,” Jurnal Matematika UNAND, vol. 10, no. 3, p. 248, Jul. 2021, doi: 10.25077/jmu.10.3.248-259.2021.

Y. Oktavianus Sitohang and G. Darmawan, “PERBANDINGAN AKURASI RECURRENT FORE-CASTING DAN VECTOR FORECASTING PADA METODE SINGULAR SPECTRUM ANALYSIS DALAM PERAMALAN JUMLAH WISATAWAN MANCANEGARA YANG MASUK MELALUI BANDARA NGURAH RAI BALI TAHUN 2017.” [Online]. Available: www.prnewswire.com

N. U. Clarissa, W. Sulandari, and R. Respatiwulan, “Peramalan jumlah kedatangan wisatawan mancanegara ke bali menggunakan metode hibrida SSA-WFTS,” Jurnal Ilmiah Matematika, vol. 8, no. 1, p. 19, Apr. 2021, doi: 10.26555/konvergensi.v8i1.21460.

C. V. Hudiyanti, F. A. Bachtiar, and B. D. Setiawan, “Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

S. Arslan, "A hybrid forecasting model using LSTM and Prophet for energy consumption with de-composition of time series data," PeerJ Comput Sci, vol. 8, 2022, doi: 10.7717/PEERJ-CS.1001.

N. Putu, N. Hendayanti, M. Nurhidayati, and R. Artikel, “Perbandingan Metode Seasonal Auto-regressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Mancanegara ke Bali INFO ARTIKEL ABSTRAK,” Jurnal Varian, vol. 3, no. 2, pp. 149–162, 2020, doi: 10.30812/varian.v3i1.

O. Trull, J. C. García-Díaz, and A. Troncoso, "Initialization methods for multiple seasonal holt-winters forecasting models," Mathematics, vol. 8, no. 2, Feb. 2020, doi: 10.3390/math8020268.

I. Hadiriyanto and M. Yamin Darsyah, “Peramalan Jumlah Wisatawan Mancanegara di Provinsi Bali dengan Menggunakan ARIMA dan Winter Forecasting the Number of Foreign Tourists in Bali Province by Using ARIMA and Winter,” 2018.

M. Al Haris, L. Himmaturrohmah, I. M. Nur, N. Maulida, and S. Ayomi, "FORECASTING THE NUMBER OF FOREIGN TOURISM IN BALI USING THE HYBRID HOLT-WINTERS-ARTIFICIAL NEURAL NETWORK METHOD," J. Math. & App, vol. 17, no. 2, pp. 1029–1040, 2023, doi: 10.30598/barekengvol17iss2pp1029-1040.

S. Arslan, "A hybrid forecasting model using LSTM and Prophet for energy consumption with de-composition of time series data," PeerJ Comput Sci, vol. 8, 2022, doi: 10.7717/PEERJ-CS.1001.

Z. Z. OO and S. PHYU, "Time Series Prediction Based on Facebook Prophet: A Case Study, Tem-perature Forecasting in Myintkyina," International Journal of Applied Mathematics Electronics and Computers, pp. 263–267, Dec. 2020, doi: 10.18100/ijamec.816894.

J. W. Taylor, "Short-term electricity demand forecasting using double seasonal exponential smooth-ing," Journal of the Operational Research Society, vol. 54, no. 8, pp. 799–805, 2003, doi: 10.1057/palgrave.jors.2601589.

J. W. Taylor, "Triple seasonal methods for short-term electricity demand forecasting," Eur J Oper Res, vol. 204, no. 1, pp. 139–152, Jul. 2010, doi: 10.1016/j.ejor.2009.10.003.

N. Nurhamidah, N. Nusyirwan, and A. Faisol, "FORECASTING SEASONAL TIME SERIES DATA USING THE HOLT-WINTERS EXPONENTIAL SMOOTHING METHOD OF ADDITIVE MODELS," Jurnal Matematika Integratif, vol. 16, no. 2, p. 151, Dec. 2020, doi: 10.24198/jmi.v16.n2.29293.151-157.

G. P. Zhang, "Time series forecasting using a hybrid ARIMA and neural network model," 2003. [Online]. Available: www.elsevier.com/locate/neucom

S. Makridakis, E. Spiliotis, and V. Assimakopoulos, "The M4 Competition: 100,000 time series and 61 forecasting methods," Int J Forecast, vol. 36, no. 1, pp. 54–74, Jan. 2020, doi: 10.1016/j.ijforecast.2019.04.014.

B. G. Prianda and E. Widodo, “PERBANDINGAN METODE SEASONAL ARIMA DAN EXTREME LEARNING MACHINE PADA PERAMALAN JUMLAH WISATAWAN MANCANEGARA KE BALI,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, pp. 639–650, Dec. 2021, doi: 10.30598/barekengvol15iss4pp639-650.

T. Trimono, A. Sonhaji, and U. Mukhaiyar, “FORECASTING FARMER EXCHANGE RATE IN CENTRAL JAVA PROVINCE USING VECTOR INTEGRATED MOVING AVERAGE,” MEDIA STATISTIKA, vol. 13, no. 2, pp. 182–193, Dec. 2020, doi: 10.14710/medstat.13.2.182-193.

F. T. Br Sitepu, V. A. Sirait, and R. Yunis, “Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Prophet Facebook,” Paradigma - Jurnal Komputer dan Informatika, vol. 23, no. 1, Mar. 2021, doi: 10.31294/p.v23i1.9756.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Aviolla Terza Damaliana, Kartika Maulida Hindrayani , Tresna Maulana Fahrudin