Abstract
Due to its complex nature and outdated perception, Wayang is a traditional Indonesian art form influenced by Hindu-Buddhism. However, it is difficult for the younger generation to recognize the various types of Wayang. In an effort to preserve Wayang culture, this study evaluates the performance of four deep learning models in recognizing types of Wayang namely, Vision Transformer (ViT), ResNet34, YOLOv5-cls, and YOLOv8-cls. These models were trained and assessed using a dataset of 232 images representing six Wayang types and using matrix such as accuracy, recall, precision, and F1 score. ViT demonstrated efficiency and adaptability despite high computational requirements, achieving the best accuracy (91.3%), showing high adaptability despite substantial computational requirements. Meanwhile, YOLOv5-cls and YOLOv8-cls offered a good balance betwwen accuracy and efficiency. This study suggest that deep learning models can play an essentialrole in Wayang by enhancing recognition accessibility, thus helping younger generations appreciate this tradisional art form.
References
Putrajip, M. Y., & Retnowati, T. H. (2019). Nilai Edukatif Wayang Ukur Panakawan Karya Sigit Sukasman Dan Implementasinya Pada Pembelajaran Seni Budaya Kelas X SMA. Lumbung Pustaka UNY.
Kusbiyanto, M. (2015). Upaya Mencegah Hilangnya Wayang Kulit Sebagai Ekspresi Budaya Warisan Budaya Bangsa. Jurnal Hukum dan Pembangunan, 45(4), 589-602.
Alfaqi, M. Z. (2022). Eksistensi dan peroblematika pelestarian Wayang kulit pada generasi muda Kec. Ringinrejo Kab. Kediri. Jurnal Praksis dan Dedikasi (JPDS), 5(2), 119-128.
Mulyono, S. (1979). Simbolisme dan Mistikisme dalam Wayang. Jakarta. Gunung Agung.
Aizid, R. (2013). Atlas Pintar Dunia Wayang. Yogyakrta: Diva Press.
Sunardi, Suwarno, B., & Pujiono, B. (2014). Revitalisasi dan inovasi Wayang gedog. ISI Press Surakarta.
Afifah, N. (2019). Makna simbolik Wayang golek jawa barat. Jakarta: Fakultas Ushuluddin dan Filsafat UIN Syarif Hidayatullah.
Widagdo, J. (2015). Struktur Wajah, Aksesoris Serta Pakaian Wayang Golek Menak. Jurnal DISPROTEK, 6(1), 95-102.
Kusumaning Tiyas, S. (2022). Media Wayang Kulit dalam Pembelajaran Bahasa Jawa di Sekolah Dasar. Kalam Cendekia: Jurnal Ilmiah Kependidikan, 10(2).
Siskawati, A., & Alrianingrum, S. (2018). Wayang Suluh Madiun Tahun 1947-1965. AVATARA, e-Journal Pendidikan Sejarah, 6(2), 1-8.
Dradjat, R. P., Darmayanti, T. E., & Isfiaty, T. (2022). Membaca visual Wayang beber sebagai ide perancangan ruang. Visual Heritage: Jurnal Kreasi Seni dan Budaya, 4(3), 309-317.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv.org, Dec. 10, 2015. https://arxiv.org/abs/1512.03385
I. C. Duta, L. Liu, F. Zhu, and L. Shao, “Improved Residual Networks for Image and Video Recognition,” in 2020 25th International Conference on Pattern Recognition (ICPR), Jan. 2021. Accessed: Jul. 22, 2024. [Online]. Available: http://dx.doi.org/10.1109/icpr48806.2021.9412193
A. Ridhovan and A. Suharso, “PENERAPAN METODE RESIDUAL NETWORK (RESNET) DALAM KLASIFIKASI PENYAKIT PADA DAUN GANDUM,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 1, pp. 58–65, Feb. 2022, doi: 10.29100/jipi.v7i1.2410.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” arXiv.org, Jun. 08, 2015. https://arxiv.org/abs/1506.02640.
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2021). “A Review of Yolo Algorithm Developments”. Procedia Computer Science, 199, 1066-1073. https://doi.org/10.1016/j.procs.2022.01.135.
Ultralytics, “YOLOv5,” Ultralytics YOLO Docs, Nov 22, 2022. [Online]. Available: https://github.com/ultralytics/yolov5. [Accessed: Jul. 23, 2024].
Liu, H., Sun, F., Gu, J., & Deng, L. (2022). “SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode”. MDPI: Sensors, 22(15). https://doi.org/10.3390/s22155817.
R . Dwiyanto, D. W. . Widodo, and P. . Kasih, “Implementation of You Only Look Once (YOLOv5) Method for Vehicle Classification in Tulungagung Regency CCTV”. Seminar Nasional Inovasi Teknologi (SEMNAS INOTEK), 3(3), vol. 6, no. 3, pp. 102-104, Nov. 2022.
Ultralytics, “YOLOv8,” Ultralytics YOLO Docs, Nov. 12, 2023. Accessed: Jul. 25, 2024. [Online]. Available: https://docs.ultralytics.com/models/yolov8/.
J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS”, Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680-1716, Nov. 2023, doi: 10.3390/make5040083.
E. Soylu and T. Soylu, “A performance comparison of YOLOv8 models for traffic sign detection in the Robotaxi-full scale autonomous vehicle competition,” Multimedia Tools and Applications, vol. 83, no. 8, pp. 25005-25035, Aug. 2023, doi: 10.1007/s11042-023-16451-1.
K. Han et al., "A Survey on Vision Transformer," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 87-110, 1 Jan. 2023, doi: 10.1109/TPAMI.2022.3152247.
A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” International Conference on Learning Representations, Jun. 03, 2021. https://iclr.cc/virtual/2021/poster/3013 (accessed Jul. 18, 2024).
A. Pangestu, B. Purnama, and R. Risnandar, “Vision Transformer untuk Klasifikasi Kematangan Pisang,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 1, pp. 75–84, Feb. 2024, doi: 10.25126/jtiik.20241117389.
Asmara, I. G. N. B. P., Kesiman, M. W. A., & Indrawan, G. (2023). Balinese Shadow Wayang Characters Detection in the Wayang Peteng Performance Using the YOLOv5 Algorithm. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 12(3), 388-397
Mutawalli, L., Zaen, M. T. A., & Yuliadi. (2023). Komparasi CNN dengan ResNet Untuk Klasifikasi Paling Akurat Tingkat Keganasan Diabetes Berdasarkan Citra Retinopathy. Journal of Computer System and Informatics (JoSYC), 4(3), 522-529
Deininger, L., Stimpel, B., Yuce, A., Abbasi-Sureshjani, S., Schönenberger, S., Ocampo, P., Korski, K., & Gaire, F. (2022). A comparative study between vision transformers and CNNs in digital pathology. arXiv preprint
Kim, S., & Lee, S. (2024). YOLO-Based Damage Detection with StyleGAN3 Data Augmentation for Parcel Information-Recognition System. Computational Materials Science, 052070
Pande, S. D., & Agarwal, R. (2024). Multi-class kidney abnormalities detecting novel system through computed tomography. IEEE Access, 12, 21147-21159
A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” International Conference on Learning Representations, Jun. 03, 2021. https://iclr.cc/virtual/2021/poster/3013 (accessed Jul. 18, 2024)Phys. Conf. Ser., vol. 1544, no. 1, Jun. 2020, doi: 10.1088/1742-6596/1544/1/012003.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Andreas Nugroho Sihananto, Muhammad Muharrom Al Haromainy , Zaky Ahmad Fauzi, Reno Alfa Reza, Gredy Christian Hendrawan Putra; Theressa Marry Christianty