Prediction of The Islamic Stock Price Index and Risk of Loss Using The Long Short-Term Memory (LSTM) and Value At Risk (VaR)
PDF

Keywords

Prediction
Deep Learning
LSTM (Long Short-term Memory
Investment risk
VaR (Value at Risk)
Islamic Stock Price Index

How to Cite

Taufik, I. A., Trimono, T., & Muhaimin, A. (2024). Prediction of The Islamic Stock Price Index and Risk of Loss Using The Long Short-Term Memory (LSTM) and Value At Risk (VaR). IJDASEA (International Journal of Data Science, Engineering, and Analytics), 4(01), 12–22. https://doi.org/10.33005/ijdasea.v4i01.16

Abstract

Investment aims to increase the value of capital or earn additional income through asset growth, dividends or profits. One investment instrument that is in demand, especially among the Muslim community, is Islamic stocks, which are in accordance with Islamic principles that focus on a healthy economy. This research is focused on predicting Islamic stock prices using the Long Short-Term Memory (LSTM) method and measuring risk with Value at Risk (VaR) using the Cornish-Fisher Expansion (ECF) method. Stock price data from the food sector (PT Indofood), technology sector (Telkom Indonesia), and construction sector (Indocement) for the period 2018-2023 were analyzed. The results show that the ADAM model provides the best performance with the lowest prediction error rates for INTP and TLKM stocks (around 1.22%, 1.98%, and 1.41%). In addition, the SGD model shows limitations in accurate predictions with an error rate above 12%. VaR analysis reveals a slightly higher level of risk in INTP stocks, with a VaR value of around 2.85% at the 95% confidence level. Meanwhile, TLKM stock shows a lower level of risk, with a VaR of around 2.25% at the same confidence level. An in-depth understanding of the risk and growth characteristics of each stock, as well as the selection of the optimization model, are key in making wise investment decisions.

 

https://doi.org/10.33005/ijdasea.v4i01.16
PDF

References

D. Tambunan, “Investasi Saham di Masa Pandemi COVID-19,” Widya Cipta J. Sekr. dan Manaj., vol. 4, no. 2, pp. 117–123, 2020, doi: 10.31294/widyacipta.v4i2.8564.

D. Chandra, A. T. Ramaningtyas, and L. Hakim, “Penerapan Breadth First Search Untuk Mengelola Keuangaan Dengan Menentukan Karakteristik Investasi Individu,” J. Tek. Inform. UNIKA St. Thomas, vol. 06, pp. 395–402, 2021, doi: 10.54367/jtiust.v6i2.1561.

S. Elviani, R. Simbolon, and S. P. Dewi, “Faktor-Faktor Yang Mempengaruhi Harga Saham Perusahaan Telekomunikasi,” J. Ris. Akunt. Multiparadigma, vol. 6, no. 1, pp. 29–39, 2019.

Via Sukmaningati and Fadlilatul Ulya, “Keuntungan Investasi di saham syariah,” J. Investasi Islam, vol. 5, no. 1, pp. 59–68, 2021, doi: 10.32505/jii.v5i1.1648.

Q. P. Nguyen, Z. Dai, B. K. H. Low, and P. Jaillet, “Value-at-Risk Optimization with Gaussian Processes,” Proc. Mach. Learn. Res., vol. 139, pp. 8063–8072, 2021.

R. Andespa, D. A. I. Maruddani, and T. Tarno, “Expected Shortfall Dengan Ekspansi Cornish-Fisher Untuk Analisis Risiko Investasi Sebelum Dan Sesudah Pandemi Covid-19 Dilengkapi Gui R,” J. Gaussian, vol. 11, no. 2, pp. 173–182, 2022, doi: 10.14710/j.gauss.v11i2.35457.

P. A. Riyantoko, T. M. Fahruddin, and K. Maulida, “ANALISIS PREDIKSI HARGA SAHAM SEKTOR PERBANKAN MENGGUNAKAN ALGORITMA LONG-SHORT TERMS MEMORY,” vol. 2020, no. Semnasif, pp. 427–435, 2020.

G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM),” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 3, pp. 164–172, 2023, doi: 10.25077/teknosi.v8i3.2022.164-172.

B. R. Zain, C. D. Indrawati, and P. S. Murdapa, “Analisis Simulasi Monte Carlo VAR ( Value at Risk ) dan Maximum Entropy Bootstrap untuk Menghitung Total Loss pada Kasus PT . X,” Semin. dan Konf. Nas. IDEC, no. 2010, p. E03.1-E03.6, 2021.

H. Mustafidah and S. N. Rohman, “Mean Square Error pada Metode Random dan Nguyen Widrow dalam Jaringan Syaraf Tiruan Mean Square Error on Random and Nguyen Widrow Method on Artificial Neural Networks,” Sainteks, vol. 20, no. 2, pp. 133–142, 2023, doi: 10.30595/sainteks.v20i2.19516.

A. Arimond, D. Borth, A. G. F. Hoepner, M. Klawunn, and S. Weisheit, “Neural Networks and Value at Risk,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3591996.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Ikbar Athallah Taufik, Trimono Trimono, Amri Muhaimin